3-D Graph Cut Segmentation with Riemannian Metrics to Avoid the Shrinking Problem
نویسندگان
چکیده
Though graph cut based segmentation is a widely-used technique, it is known that segmentation of a thin, elongated structure is challenging due to the "shrinking problem". On the other hand, many segmentation targets in medical image analysis have such thin structures. Therefore, the conventional graph cut method is not suitable to be applied to them. In this study, we developed a graph cut segmentation method with novel Riemannian metrics. The Riemannian metrics are determined from the given "initial contour," so that any level-set surface of the distance transformation of the contour has the same surface area in the Riemannian space. This will ensure that any shape similar to the initial contour will not be affected by the shrinking problem. The method was evaluated with clinical CT datasets and showed a fair result in segmenting vertebral bones.
منابع مشابه
Segmentation as a Riemannian Drum Problem
In this paper, the segmentation problem is formulated as a problem of segmenting a Riemannian manifold. The image domain is endowed with an anisotropic metric and its segmentation is obtained by thresholding the second eigenvector of the Laplace-Beltrami operator on the Riemannian manifold so defined. The formulation is an analytic analog of a recently proposed approach to segmentation based on...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملStatistical Significance Based Graph Cut Segmentation for Shrinking Bias
Graph cut algorithms are very popular in image segmentation approaches. However, the detailed parts of the foreground are not segmented well in graph cut minimization.There are basically two reasons of inadequate segmentations: (i) Data smoothness relationship of graph energy. (ii) Shrinking bias which is the bias towards shorter paths. This paper improves the foreground segmentation by integra...
متن کاملComputing Geodesics and Minimal Surfaces via Graph Cuts
Geodesic active contours and graph cuts are two standard image segmentation techniques. We introduce a new segmentation method combining some of their benefits. Our main intuition is that any cut on a graph embedded in some continuous space can be interpreted as a contour (in 2D) or a surface (in 3D). We show how to build a grid graph and set its edge weights so that the cost of cuts is arbitra...
متن کاملRandom Walks with Adaptive Cylinder Flux Based Connectivity for Vessel Segmentation
In this paper, we present a novel graph-based method for segmenting the whole 3D vessel tree structures. Our method exploits a new adaptive cylinder flux (ACF) based connectivity framework, which is formulated based on random walks. To avoid the shrinking problem of elongated structure, all existing graph-based energy optimization methods for vessel segmentation rely on skeleton or ROI extracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 14 Pt 3 شماره
صفحات -
تاریخ انتشار 2011